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We examined whether the performance of the National Institute of
Aging’s Consortium to Establish a Registry for Alzheimer’s Dis-
ease’s 10-word list (CWL), part of the consortium’s neuropsycho-
logical battery, can be improved for detecting Alzheimer’s disease
and related disorders early. We focused on mild cognitive impair-
ment (MCI) and mild dementia because these stages often go
undetected, and their detection is important for treatment. Using
standardized diagnostic criteria combined with history, physical
examination, and cognitive, laboratory, and neuroimaging studies,
we staged 471 community-dwelling subjects for dementia severity
by using the Clinical Dementia Rating Scale. We then used corre-
spondence analysis (CA) to derive a weighted score for each subject
from their item responses over the three immediate- and one
delayed-recall trials of the CWL. These CA-weighted scores were
used with logistic regression to predict each subject’s probability of
impairment, and receiver operating characteristic analysis was
used to measure accuracy. For MCI vs. normal, accuracy was 97%
[confidence interval (C.I.) 97–98%], sensitivity was 94% (C.I. 93–
95%), and specificity was 89% (C.I. 88–91%). For MCI�mild demen-
tia vs. normal, accuracy was 98% (C.I. 98–99%), sensitivity was 96%
(C.I. 95–97%), and specificity was 91% (C.I. 89–93%). MCI sensitiv-
ity was 12% higher (without lowering specificity) than that ob-
tained with the delayed-recall total score (the standard method for
CWL interpretation). Optimal positive and negative predictive
values were 100% and at least 96.6%. These results show that
CA-weighted scores can significantly improve early detection of
Alzheimer’s disease and related disorders.

Alzheimer’s disease � Consortium to Establish a Registry for Alzheimer’s
Disease � correspondence analysis

In the United States today, �12% of individuals age 65 and over
and �0.8% of persons 45–65 years old have Alzheimer’s

disease (AD) or a related disorder (ADRD) (1). ADRD refers
to all disorders that can lead to mild cognitive impairment
(MCI), which is typically followed by dementia. MCI has been
defined in a variety of ways, and there is no universally accepted
standard. However, all definitions share the feature of cognitive
impairment (usually just one) that does not impair instrumental
activities of daily living (e.g., shopping, finances, cooking, house-
hold maintenance, and finding familiar locations). Dementia is
defined as the presence of two or more areas of cognitive
impairment that affect instrumental activities of daily living at
the very least.

The most common dementia-related disorders are AD (55–
70%), cerebrovascular dementia (15–25%), Lewy body disease
and Parkinson’s disease (10–15%), frontal lobe dementia (5–
10%), and traumatic brain injury (�5%) (2). A comprehensive
multifactorial evaluation including clinical assessment, labora-
tory testing, and imaging is typically used to diagnose ADRD.

The earliest clinical stage of ADRD is classified as MCI.
During this stage, an individual’s most complex abilities may be
compromised but higher-order instrumental activities of daily
living such as traveling, paying bills, doing laundry, and balancing
a checkbook are spared. Because there is irreversible loss of

function for every month that mild to moderate AD goes
untreated (3), and because cholinesterase inhibitor treatment
reduces the rate of cognitive impairment in AD patients treated
for 5 years by �50% (3, 4), it is important to detect, diagnose,
and treat AD as early as possible (3, 5–9).

MCI and dementia can be measured by using a variety of
standardized tools, one of which is the Clinical Dementia Rating
(CDR) scale. The CDR has high interrater reliability (10, 11).
The clinician using this scale interviews the patient and family,
assigns a severity score to each of six CDR subcategories
(memory, orientation, judgment and problem solving, commu-
nity affairs, home and hobbies, and personal hygiene), and then
applies standard scoring rules to obtain an overall severity score.
A CDR score of 0 suggests normal aging, a score of 0.5 indicates
MCI, and scores of 1, 2, and 3 indicate mild, moderate, and
severe dementia, respectively. A person with mild dementia
(MD) is impaired in performing instrumental activities of daily
living such as traveling, shopping, paying bills, keeping house,
and cooking. A person with moderate dementia is impaired in
basic activities of daily living such as dressing, bathing, and
toileting.

Although current methods of detecting moderate dementia in
community-based clinical practices are reasonably accurate, they
do not sensitively detect MCI and often do not detect MD. This
insensitivity is because a person with MCI or very MD experi-
ences subtle memory problems greater than normally expected
with aging but may not show other symptoms of dementia such
as impaired judgment or reasoning. In fact, �67% of individuals
are moderately demented at the time of first diagnosis (12, 13).
The difficulty in detecting MCI and, in many cases, MD is largely
because of the insensitivity of the most commonly used screening
test in clinical practice, the MiniMental Status Examination
(MMSE). The MMSE is a brief test of several cognitive abilities
with a maximum score of 30 points. One of the larger studies
designed to differentiate individuals with MCI from those with
normal aging showed that the MMSE detected only 30% of 244
subjects classified as MCI according to a CDR score of 0.5 (14,
15). More sensitive screening tests that can be practically applied
in community health-care settings are therefore needed.

The National Institute of Aging, founded in 1986, has brought
together 24 major medical research centers in the Consortium to
Establish a Registry for AD (CERAD). The consortium has
developed an extensive battery for evaluating and diagnosing
persons with the MCI and dementia stages of ADRD. The

Freely available online through the PNAS open access option.

Abbreviations: AD, Alzheimer’s disease; ADRD, AD and related disorders; CA, correspon-
dence analysis; CDR, Clinical Dementia Rating; CERAD, Consortium to Establish a Registry
for Alzheimer’s Disease; C.I., confidence interval; CWL, CERAD 10-word list; MCI, mild
cognitive impairment; MD, mild dementia; MMSE, Mini-Mental Status Exam; ROC, receiver
operating characteristic.

‡To whom correspondence should be addressed. E-mail: rshankle@mccare.com.

§W.R.S., A.K.R., J.H., D.F., J.M.C., T.C., and X.S. have a financial interest in Medical Care
Corporation.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0501157102 PNAS � March 29, 2005 � vol. 102 � no. 13 � 4919–4924

SO
CI

A
L

SC
IE

N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 



www.manaraa.com

CERAD battery includes demographic data on subject and
informant, clinical history and examinations, extensive neuro-
psychological exams, laboratory and imaging studies, and neu-
ropathological studies. One of the subtests of this battery, the
CERAD 10-word list (CWL), has been shown to be one of the
more sensitive tests for detecting MCI (16). The CWL consists
of three immediate-recall trials of a 10-word list, followed by an
interference task lasting several minutes, and then a delayed-
recall trial with or without a delayed-cued-recall trial. The CWL
is usually scored by recording the number of words recalled in
each of the four trials. A single cutoff score for the delayed-recall
trial, with or without adjustment for demographic variables, is
typically used to determine whether cognitive impairment exists.
This approach, however, may ignore other important informa-
tion contained in the CWL. For example, the measurement of
attention, working memory, learning, retention, and serial po-
sition effects may be important in identifying MCI. The research
summarized herein tests the hypothesis that additional informa-
tion contained in the CWL can more accurately distinguish MCI
from normal aging.

Methods
Our study used a case-control design to determine the value of
using the full performance profile of the CWL for discriminating
normal aging and MCI. We also measured classification accu-
racy for either MCI or MD because these stages usually are not
detected in community settings. We used correspondence anal-
ysis (CA), a technique that creates weighted scores from the
individual performance profiles. CA produces an optimally
weighted combination of values, somewhat similar to principal
components analysis, which is appropriate for dichotomous data,
and maximizes the correlation between dependent (classifica-
tion) and independent (predictor) variables (17). These CA-
weighted scores were then used in a logistic regression to predict
each subject’s probability of cognitive impairment, which was
then used with their true classification to construct nonpara-
metric receiver operating characteristic (ROC) curves. Each
ROC curve was used to measure overall classification accuracy
and select a cutoff point corresponding to an optimal sensitivity
and specificity on the curve (18). These results were validated
with split-sample and randomization methods. Finally, we com-
pared these results with those of other studies reported in the
scientific literature for MCI vs. normal aging.

Sample Classification and Characteristics. The sample was drawn
from two subject pools: a university dementia research clinic and
a community dementia clinic. The university sample consisted of
subjects who had been either referred to the University of
California, Irvine, Alzheimer’s Disease Research Center or
recruited for normal-aging studies between 1988 and 1997. The
community sample consisted of subjects who were self-referred,
referred by their physicians, or participating in a normal-aging
study. University sample subjects were thoroughly evaluated
with complete medical history, patient and caregiver interviews,
general physical and neurological exams, and 2 h of cognitive
testing using the CERAD neuropsychological test battery plus

the Wechsler tests for immediate and delayed recall of visual and
verbal information and the Blessed Information, Memory, and
Concentration Test. Also measured were abilities to perform
instrumental and basic activities of daily living and presence or
absence of major depression by standardized diagnostic criteria.
Of the subjects with MCI in the university sample, 92% had a
cause associated with progressive decline (AD, cerebrovascular
disease, Lewy body disease, or frontal lobe dementia).

Because of practical constraints, not all subjects from the
community sample received similarly extensive testing. How-
ever, all community sample subjects were staged with the CDR
and were given a portion of the CERAD battery (Boston
naming, F-A-S letter fluency, animal category fluency, figural
f luency, constructional praxis, trails A and B, symbol digit
modalities test, mental calculations, and CWL). Subjects iden-
tified with cognitive or functional impairment received the same
diagnostic evaluation as those from the university sample except
that when the etiologic diagnosis was not certain, a fluorode-
oxyglucose positron-emission tomography brain scan was ob-
tained. The same neurologist performed CDR staging and
diagnosed impairment for both samples. Of the subjects with
MCI in the community sample, 98% had a cause associated with
progressive decline.

Subjects from either the community or the university sample
who showed any evidence of cognitive and�or functional im-
pairment were further evaluated with routine dementia labora-
tory testing and magnetic resonance brain imaging. When diag-
nosis was unclear, functional brain imaging with either
hexamethyl-propyleneamine oxime plus xenon single-photon
emission with computed tomography or positron-emission to-
mography scans were performed. These evaluations were used in
conjunction with standardized criteria to identify the underlying
causes of the cognitive impairment or dementia (19–21).

To stage dementia severity with the CDR, a neurologist and
neuropsychologist independently assigned scores to each subject
by using the interview-based approach previously described. Any
differences in their CDR score assignments for a given subject
were resolved through discussion and, if necessary, case review.
CDR staging did not use the results of performance on the CWL.
The combination of comprehensive tests used in the evaluation
of the two samples was designed to ensure accurate classification
of individuals by severity level. Table 1 summarizes sample
characteristics.

Analysis. The primary outcome (dependent) variable used in this
study was severity stage (normal, MCI, MD, or moderate
dementia) based on the CDR. Primary predictor (independent)
variables were the subjects’ CA-weighted scores derived from the
40 CWL items, 10 words for each of the three immediate-recall
trials and one delayed-recall trial. For the MCI vs. normal-aging
group, we also compared the total CWL recall scores with those
obtained from the CA-weighted scores. This latter comparison
provided a measure of the increase in test performance that can
be obtained by CA compared with unadjusted total scores.
Demographic measures of age, gender, and education were

Table 1. Sample characteristics for normal aging, MCI, and MCI�MD by source

Diagnosis CDR n

Samples Sex, % Age, yr Education, yr

University Community Male Female Mean SD Mean SD

Normal aging 0 119 29 90 33 68 58.6 14.8 15.4 4.0
MCI 0.5 95 50 45 44 56 71.6 9.5 14.8 3.6
MD 1 257 119 138 40 60 76.4 8.6 12.6 5.0
Normal aging vs. MCI 0–0.5 214 79 135 39 61 64.9 14.1 15.1 3.8
Normal aging vs. MCI�MD 0–1 471 198 273 40 60 73.5 11.8 13.1 5.0
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included after the primary analysis to determine their potential
contribution to classification accuracy.

The three immediate-recall trials of the CWL measure atten-
tion and working memory (dorsolateral prefrontal cortex) plus
learning and serial position effects. The delayed-recall trial
measures retention and delayed-retrieval effects to assess the
functional capacity of the entorhinal cortex and hippocampus,
which are the first cortical structures to be affected by AD.

To code each subject’s CWL data for use with CA, each word
(item response) that a subject recalled in each trial was assigned
a value of 1; words not recalled in a trial were assigned a value
of 0. This coding created a row of 40 0s and 1s for each subject’s
CWL data. However, to create weighted scores for recalling and
not recalling a given word, CA requires two binary response
variables (recalled � yes�no, not recalled � yes�no) to be
created for each word in each trial. The sum of these two binary
variables for each word is always 1, and each subject’s row total
is always 40. The input data indicator matrix used with CA
therefore consisted of 471 subject rows by 80 binary response
columns.

CA was then applied to this indicator matrix to create a set of
orthogonal, weighted scores for each subject. The CA-weighted
scores maximize the correlation between the CDR score (rows)
and the CWL item responses (columns). Kendall and Stuart (17)
mathematically demonstrated that these CA-weighted scores
give the best linear solution to explaining the total variance of the
data, always performing as well as or better than the raw scores
from which they were derived.

The CA-weighted scores were then used as input to develop
and test the classification model for each severity-group com-
parison against the normal-aging group. Because the dependent
variable is binary (impaired vs. normal), it is reasonable to model
it with a binomial distribution in which all subjects in a group
have a uniform a priori probability of being assigned to that
group. An appropriate classification model is therefore a log-
linear (logistic) odds-ratio regression with some number of
independent predictor variables. Age, gender, and years of
education were tested in the model with and without the
CA-weighted subject scores to determine the impact of demo-
graphic variables on classification accuracy.

The model resulting from logistic regression was then used to
obtain the predicted probability of being impaired (STATA 8.0,
predict), which when combined with the subject’s true classifi-
cation, was used as input to the ROC analysis to compute overall
classification accuracy and its exact, asymptotic, binomial 95%
confidence interval (C.I.). The advantage of the ROC method is
that it generates an entire curve of sensitivity-specificity values
that can be used to select the best combination for a given
purpose. The area under the ROC curve is a measure of the
overall accuracy of any given classification method. A method
with 100% sensitivity and 100% specificity has an area under the
ROC curve of 1.00. Therefore, the closer this area is to 1.00, the
more accurately the given method classifies the groups of
interest.

To test the robustness of the results for both MCI and
MCI–MD vs. normal aging, we used three different validation
methods. First, we trained the model on the university sample
and tested it on the community sample. Second, we trained the
model on the community sample and tested it on the university
sample. Third, we randomly assigned 67% of the full sample of
impaired (MCI or MCI–MD) and normal-aging subjects for
training and used the remaining 33% for testing. We randomly
assigned the full sample 25 times in this way to derive 95% C.I.
for sensitivity, specificity, and overall classification accuracy.

For comparative purposes, the randomization validation
method was also used to measure classification results based on
the total recall scores summed across all four trials of the CWL
as well as on the total scores of the delayed-recall trial. The most

common method of interpreting the CWL results is simply to use
the total delayed-recall score.

Finally, to examine the quality of the fit of the classification
model to the data, we looked for covariate patterns in which
subjects were not consistently classified to either the normal-
aging or the MCI group. Each subject can be described by a
pattern of covariance between predicted classification and pre-
dictor variables. If some of the subjects with a given covariate
pattern do not share the predicted classification, then this
pattern will weaken the fit of the classification model. To identify
such covariate patterns, we plotted the Hosmer and Lemeshow
�2 statistic (22) against the probability of being classified as MCI
for each subject. This statistic measures the decrease in the
Pearson �2 goodness-of-fit statistic that would be caused by
deleting all subjects having a given covariate pattern. A model
with a very good fit shows two curves, one containing all normal
subjects and one containing all MCI subjects, with no data points
(covariate patterns) lying off of these curves. Data points lying
off of these curves indicate covariate patterns belonging to
subjects who are not consistently classified as either all normal
or all MCI. When such anomalous data points appear, they
indicate that the classification model cannot resolve all covariate
patterns and could be improved.

To assess how well the MCI vs. normal-aging classification
model performed relative to other screening tests, we compared
the results with those reported in the scientific literature (see
Table 4). To do this, we ran a PubMed search for MCI or
cognitive impairment no dementia to identify and review all
articles published on or before November 30, 2004, which studied
normal aging vs. MCI and published sensitivity, specificity, and
sample size (14, 23–29). Studies were excluded if they did not
report these values for a normal-aging vs. MCI sample or
included subjects with MD or moderate dementia because they
would spuriously raise sensitivity.

Results
With logistic regression, only the first two CA-weighted scores
were significant predictors of a subject’s CDR score. They
accounted for 16.5% of the 18% of the variance explained by age
and education (gender had no effect) with the remaining 1.5%
explained by age alone. However, age did not improve accuracy
above that obtained with just the CA-weighted scores. There-
fore, we only used the first two CA-weighted scores of each
subject to compute their predicted probability of being impaired
(STATA 8.0, predict p), which was then used with their true
classification to perform the ROC analysis.

Table 2 displays the results of the ROC analysis using the first
two split-sample validation methods described (university and
community validation samples). We determined sensitivity and
specificity by selecting the cutoff point along each ROC curve
that maximized sensitivity and kept accuracy maximal or near
maximal to avoid excessively reducing specificity. The sensitivity
for MCI was 95%, specificity for normal aging was 88%, and
overall accuracy was 97%.

Table 3 displays the results of the validation method with 25
randomized samples. The 95% C.I. for these results is somewhat
narrower than those for the community and university validation
samples displayed in Table 2. Because the randomization vali-
dation method gives a more formal, precise estimate of the 95%
C.I., its values will be used from here on. Sensitivity for MCI was
94%, specificity for normal aging was 89%, and overall accuracy
of the ROC curve was 97%. Sensitivity for detecting MCI–MD
was 96%, specificity for detecting normal aging was 91%, and
overall accuracy of the ROC curve was 98%. Fig. 1 shows the
overall accuracy of the ROC curve for distinguishing MCI from
normal aging with the randomization validation method.

In terms of positive predictive value (PPV, the probability that
a person with a positive test result has MCI) and negative
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predictive value (NPV, the probability that a person with a
negative test result is normal), we derived their optimal results
by combining the full range of sensitivity�specificity data points
on the ROC curve with prevalence estimates for normal aging
and MCI in persons �65 and �65 years old. We then selected
the sensitivity�specificity data point that gave the best combi-
nation of PPV and NPV. The prevalence values used for normal
and MCI in the �65 group were 0.975 and 0.025, respectively,
and the corresponding values for those in the �65 group were
0.89 and 0.11. For the �65 group, the optimal PPV and NPV
were 100% and 99.3%, respectively, and for the �65 group, they
were 100% and 96.6%.

The total recall score summed over all four CWL trials gave
a mean sensitivity of 85% for MCI (95% C.I. 83–87%) and a
mean specificity of 91% for normal aging (95% C.I. 90–92%).
These results were 9% less sensitive than those obtained with the
CA-weighted scores with minimal change in specificity. The
delayed-recall total score gave a mean sensitivity of 82% for MCI
(95% C.I. 79–85%), and mean specificity of 91% for normal
aging (95% C.I. 89–92%). These results were 12% less sensitive
than those obtained with CA-weighted scores with minimal
change in specificity.

Examination of the quality of the fit of the classification model
to the data using the Hosmer and Lemeshow �2 statistic showed
that all data points lay either on the curve containing the
normal-aging covariate patterns or on the curve containing the
MCI covariate patterns. This finding means that the subjects
belonging to each covariate pattern are all classified the same,
whether MCI or normal-aging. The model therefore gives a
consistent classification of each covariate pattern in the data set
and is consistent with the high sensitivity and specificity found.

As shown in Table 4, the use of CA-weighted scores for the
CWL item response data produced at least a 9% higher sensi-
tivity (94%) than any other published screening study of MCI vs.
normal aging. The 89% specificity for normal aging was ex-
ceeded only by tests with sensitivity of 85% or lower. The
combination of very high sensitivity and no loss of specificity is
reflected in the very large area under the ROC curve (97%),
which indicates very accurate classification of MCI and normal
aging. Additionally, CA-weighted scores compared with total
delayed-recall scores (the most commonly used method for
interpreting the CWL) were 12% more sensitive in detecting
MCI, while having about the same specificity. CA-weighted

scores significantly improve normal vs. MCI classification with
the CWL.

Following the search methods described, we found no pub-
lished studies of MCI vs. normal aging for the following com-
monly used screening tests: ADAS-Cog, Buschke Selective Re-
minding Test, California Verbal Learning Test, CANS-MCI,
Cognitive Abilities Screening Instrument (CASI), IQCODE,
Memory Impairment Screen, Minnesota Cognitive Acuity
Screen (MCAS), MiniCog, New York University delayed para-
graph recall, Rey Auditory Verbal Learning Test, Short Test of
Mental Status, SISCO, Telephone Instrument for Cognitive
Screening (TICS), and Wechsler Logical Memory Scale.

To look for differences in the difficulty of recalling the 10
words of the CWL, we plotted the CA-weighted column scores
for each trial (Fig. 2). This plot provided a way to examine to
what degree primacy and recency effects (words at the beginning
and end of the list, respectively) on word recall difficulty were
represented in the CA-weighted column scores. If there were no
effects of word position in the list (serial position effect), then all
10 words in a given trial would have the same recall difficulty. If
there were no effects of the number of trials to learn a given
word, then all trials would have the same recall difficulty for that
word.

Fig. 2 shows that word recall difficulty is heterogeneous both
across trials and across word positions. For the immediate-recall
(learning) trials, trial 1 is most difficult for all words except words
9 and 10 (the recency effect). The delayed-recall trial is the most
difficult of all, presumably because of the absence of further
encoding of the 10-word list for several minutes before perform-
ing retrieval. Words in the middle of a list are more difficult to
recall than words from the beginning (primacy effect) or the end
(recency effect). A simple summative score of the number of
words recalled would lose this information, thus reducing clas-
sification accuracy.

Discussion
As mentioned, the delayed-recall score of the CWL is reported
to be somewhat sensitive for detecting the earliest stages of
ADRD and has been used by the National Institute of Aging
CERAD centers for �20 years (16, 30). The sensitivity of
delayed recall is high because it measures entorhinal and hip-
pocampal cortical function, where the earliest neuropathological
changes in AD occur (31). In detecting subtle entorhinal or
hippocampal dysfunction, measuring encoding may be more

Table 2. Full and split sample results based on the CWL CA-weighted scores

Comparison n ROC overall accuracy 95% C.I. Sensitivity Specificity

MCI vs. normal 214 97 (94, 99) 95 88
Community validation 135 97 (93, 99) 91 89
University validation 79 98 (93, 100) 98 90

MCI�MD vs. normal 471 98 (97, 99) 97 88
Community validation 273 97 (95, 99) 93 90
University validation 198 99 (97, 100) 98 90

MD vs. normal 376 99 (98, 100) 96 99
Community validation 228 95 (91, 97) 94 92
University validation 148 100 (98, 100) 99 97

Table 3. Results of the randomization validation method based on CA-weighted scores of
the CWL

Comparison n
ROC overall

accuracy 95% C.I. Sensitivity 95% C.I. Specificity 95% C.I.

Normal vs. MCI 214 97 (97, 98) 94 (93, 95) 89 (88, 91)
Normal vs. MCI�MD 471 98 (98, 99) 96 (95, 97) 91 (89, 93)

4922 � www.pnas.org�cgi�doi�10.1073�pnas.0501157102 Shankle et al.
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important than retrieval because analysis of the ‘‘people and
doors’’ test showed no difference in classification accuracy
between delayed recall (which requires that a word be previously
encoded to be retrieved) and delayed-recognition (which elim-
inates retrieval and simply measures whether the word was
encoded) (32). Disorders such as cerebrovascular disease, de-
pression, and Lewy body disease, in which delayed recall is
impaired but delayed recognition is intact, indicate a dysfunction
of retrieval that is presumably caused by disrupted connections
to the entorhinal-hippocampal circuit without damage to the
circuit itself.

Encoding occurs during the immediate-recall trials of the
CWL, and its persistence is measured with delayed-recall and
delayed-recognition tasks. Our results suggest that the immedi-
ate-recall trials have encoding and�or retrieval information that
enhances the power of delayed-recall measures to detect MCI.
The relatively higher sensitivity of the present study’s results
compared with other studies of normal vs. MCI is likely caused
by the use of all of the encoding and retrieval measures in the
CWL data, including weighting of each word’s relative impor-
tance by its position in the list and by the trial in which it is
recalled. The CA-weighted column scores of the CWL data
measure the difficulty of encoding and retrieval for each word in

each trial. A simple summation or cutoff score of the number of
words recalled across the four trials would not account for such
weightings of encoding and retrieval difficulty.

When we separated MCI subjects into AD and non-AD
diagnoses, sensitivity was higher for the AD group, suggesting
that increasingly precise measures of encoding can improve
detection of early entorhinal-hippocampal dysfunction in AD. A
larger sample would enable more complete analysis of MCI AD
and MCI non-AD.

Efficacy of CA. With �95% of the MCI subjects having a diagnosis
that would produce progressive decline, the high sensitivity in
the study means that many non-AD diagnoses also show early
changes in encoding and�or retrieval that differ from normal
aging. The implication of an abnormal screening result based on
the randomization validation method is that it is correct in �94%
of MCI cases, most of which are progressive, and incorrect (a
false positive result) in �11% of normal-aging subjects. The
implication of a normal screening result is that it is correct in
�89% of all normal-aging subjects and incorrect (a false nega-
tive result) in �6% of MCI cases. If one uses the optimal positive
and negative predictive value results derived from the ROC
curve and population prevalence estimates of normal and MCI,
the findings are even more striking. In this case, the probability

Fig. 1. Overall accuracy of classifying MCI vs. normal. The nonparametric
ROC curve for MCI (sensitivity) vs. the false-alarm rate for normal aging (1 �
specificity) was generated by applying CA and logistic regression to the item
response indicator matrix of the CWL data by using the methods described in
the text. A perfect fit has an area of 1.0. The fit of this ROC curve is 0.973 (95%
C.I. 0.97, 0.98), giving an overall accuracy of 97.3%.

Table 4. Studies of sensitivity and specificity of tests for MCI vs. normal

MCI vs. normal-aging test n, MCI n, normal n, total Sensitivity Specificity

CWL with CA-weighted scoring* 95 119 214 94 89
CWL total delayed-recall score* 95 119 214 82 91
Object delayed recall with proactive interference 53 53 106 85 89
Modified MMSE† 24 52 76 83 90
Cognitive Capacity Screening Exam (CCSE) 47‡ 267 314 74 85

84 267 351 88 84
MMSE � CCSE 47‡ 267 314 83 80
DemTect 97 97 194 80 92
Computerized Dementia Screen (Korean) 41 103 144 76 94
Clock drawing test 48 41 89 75 76
MMSE 24 52 76 71 85

47 267 314 61 80
7-min test 25 35 60 28 ?
Functional activities questionnaire 244 198 442 20 99

*Data from the present study using the randomization validation method (see Methods).
†The MMSE was modified by including multiple delayed recall trials.
‡This MCI sample was restricted to those with a National Institute of Neurological Disorders and Stroke�Alzheimer’s Disease and Related
Disorders Association diagnosis of possible AD.

Fig. 2. Effect of word position and trial number in recalling words from the
CWL. The difficulty of recalling each word in each trial is shown as a bar graph
according to the serial position in the word list (x axis) and trial number coded
by color (red, yellow, green, and blue). Shown are the effects of serial position
(primacy, recency) and repeated exposure across trials. There is marked het-
erogeneity of recall difficulty as a function of both serial position and re-
peated exposure (trial number).
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that a person with a positive screening test result has MCI is
100% and the probability that a person with a negative screening
test result is normal is at least 96.6%. These rather straightfor-
ward interpretations can provide guidance for busy clinicians as
to whether to proceed with diagnosis and treatment.

Potential Sources of Error. Although this is a case-control study,
the sample of MCI subjects reflects the same proportions of
disorders commonly seen in dementia. The percentage of MCI
cases with progressive decline was comparable to that reported
for dementing disorders (33). The patterns of missing data in the
two samples we studied can introduce error if those patterns are
not missing at random (34). A third source of potential error is
common to almost all medical research and is caused by the
difficulty of randomly sampling a population. One source of
error that was reduced by the inclusion of a community sample
was the selection bias that occurs in academic, tertiary referral
centers. A source of error that arises from the use of community
and academic samples is caused by their differences in how
extensively subjects are evaluated. Community samples may
misclassify more subjects because they are less extensively stud-
ied, which may explain the slightly lower sensitivities and spec-
ificities of the community validation sample. Another potential
source of error in both samples was caused by the use of fewer
diagnostic tests (the more expensive ones) in the normal-aging
subjects. Such an error source is difficult to completely eliminate
because of associated costs and would increase the false negative
rate and lower sensitivity. However, the sensitivity and specificity

of our results is comparable to those obtained from positron-
emission tomography studies, suggesting that including these
more expensive tests would neither significantly increase false
negative rates nor lower sensitivity.

Conclusions
CA can substantially improve the CWL, which has been inter-
nationally validated and is sensitive for detecting early stages of
ADRD. Compared with the usual method of scoring and
interpreting the CWL, the CA-weighted scores derived from the
item responses increased sensitivity in detecting MCI by 12%
while preserving high specificity. Following the literature search
method for identifying normal vs. MCI studies, we found our
results to be the highest reported. Because most other screening
tests rely primarily on total scores that are not adjusted to
maximize their explanation of the variance, they could be
improved by incorporating the methods presented here.
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